Let’s start with my 95-year-old mom. Her memory is unreliable, but she’s still lucid, churns out sarcasm like a pro, and plays a lightning-fast game of double solitaire. Today I finally quit after she won seven games in a row, and, yes, I was trying my best.
She also hears music continuously, and it’s not the kind of music that drives us nuts when we can’t get a tune out of our head. She mainly hears original music, and she will sometimes try to hum or sing what she’s hearing. She says it’s coming from "the neighbors downstairs," and it doesn’t bother her, she says, because some of it isn’t bad and because it helps her fall asleep. The fact that other people can’t hear it doesn’t bother her either. She simply smiles slyly and says, "Maybe you should get your hearing checked."
Am I concerned? Well, just a bit — not about the music but about its source. As I told my mom the other day, I would be more comfortable if the inconsiderate neighbors lived upstairs. She laughed and said, "I see what you’re getting at, but don’t worry. I’m not going to hell." Very determined, my mom. Was she planning to negotiate the issue with a hand of double solitaire?
...
The main reason we should give serious thought to such a theory has nothing to do with ghosts. It has to do with the sorry state of brain science and its reliance on the computer metaphor. One of my research assistants recently calculated that Beethoven’s thirty-two piano sonatas contain a total of 307,756 notes, and that doesn’t take into account the hundreds of sections marked with repeat symbols. Beethoven’s scores also include more than 100,000 symbols that guide the pianist’s hands and feet: time signatures, pedal notations, accent marks, slur and trill marks, key signatures, rests, clefs, dynamic notations, tempo marks, and so on.
Why am I telling you about Beethoven? Because piano virtuoso and conductor Daniel Barenboim memorized all thirty-two of Beethoven’s sonatas by the time he was 17, and he has since memorized hundreds of other major piano works, as well as dozens of entire symphony scores — tens of millions of notes and symbols.
Do you think all this content is somehow stored in Barenboim’s ever-changing, ever-shrinking, ever-decaying brain? Sorry, but if you study his brain for a hundred years, you will never find a single note, a single musical score, a single instruction for how to move his fingers — not even a “representation” of any of those things. The brain is simply not a storage device. It is an extraordinary entity for sure, but not because it stores or processes information. (See my Aeon essay, “The Empty Brain,” for more of my thinking on this issue, and for a truly great thrill, watch Barenboim play the third movement from Beethoven’s 14th piano sonata here.)
Over the centuries — completely baffled by where human intelligence comes from — people have used one metaphor after another to ‘explain’ our extraordinary abilities, beginning, of course, with the divine metaphor millennia ago and progressing – and I use that word hesitatingly — to the current information-processing metaphor. I am proposing now that we abandon the metaphors and begin to consider substantive ideas we can test.
To be clear: I am not offering transduction theory as yet another metaphor. I am suggesting that the brain is truly a bidirectional transducer and that, over time, we will find empirical support for this theory.
...
This brings me to the claustrum, a small structure just below the cerebral cortex that ispoorly understood, although recent research is beginning to shed some light. Many areas of the brain connect to the claustrum, but what does it do? If the claustrum turns out to be the place where signals are transduced by the brain, you will probably never discover this remarkable fact if transduction is not on your list of possibilities. (If you’re a history buff, you might also be aware of another small brain structure — the pineal gland — that could conceivably be a transduction site. In his first book, Treatise of man, written in the early 1600s, French philosopher René Descartes identified this gland as the seat of the soul. Remarkably, in the late 1900s, scientists discovered that tissue in the pineal gland responds to electromagnetic radiation.)
If modern brain scientists begin to look for evidence that the brain is a transducer, they might find it directly through a new understanding of neural pathways, structures, electro-chemical activity, or brain waves. Or they might find such evidence indirectly by simulating aspects of brain function that appear to be capable of transducing signals. They might even be able to create devices that send signals to a parallel universe, or, of greater interest, that receive signals from that universe. Comparative studies of animal brains, which could conceivably have limited connections to the OS, might help move the research along.
Efficient and clear transduction might also prove the key to understanding the emergence of human language and consciousness; here is a possible explanation for what might have been the relatively sudden appearance of such abilities in humans (see Julian Jaynes’s 1976 book, The Origin of Consciousness in the Breakdown of the Bicameral Mind). Neural transduction might also prove to be the mechanism underlying Carl Jung’s concept of the “collective unconscious.” Even Noam Chomsky’s theory of universal grammar could get a boost from transduction theory; it would hardly be surprising that most or all human languages share certain grammatical rules if languages are all constrained by signals emanating from a common source. And then there’s that ‘flow’ state my friend Mihaly Csikszentmihalyi taught everyone about. When I’m in a hyper-creative mode – now, for example, as I’m writing – I have almost no awareness of this world or of the passage of time. Is the OS the source of our creativity?
Robert Epstein (born June 19, 1953) is an American psychologist, professor, author, and journalist. He was awarded a Ph.D. in psychology by Harvard University in 1981, was editor in chief of Psychology Today, and has held positions at several universities including Boston University, University of California, San Diego, and Harvard University. He is also the founder and director emeritus of the Cambridge Center for Behavioral Studies in Concord, MA.